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Introduction 
 
Optimizing compilers have a fundamental problem. No matter how powerful their optimizations are, 
they are no substitute for good application algorithms.  Consider the case of sorting.  For sufficiently 
large data sets, a merge sort algorithm compiled with a less powerful optimizer will always out-
perform a selection sort algorithm compiled with the most powerful optimizer.  Or consider the case of 
solving systems of equations. For sufficiently large data sets, a Gaussian Elimination algorithm 
compiled with a less powerful optimizer will always out-perform a Cramer's rule algorithm compiled 
with the most powerful optimizer. 
 
Developers of optimizing compilers also have an opportunity to leverage an under-used asset. 
There are many high-quality numerical libraries that are publicly available, such as the BLAS and 
LAPACK, that provide broadly applicable algorithms for scientific and engineering computing. 
Vendors of high performance computers often provide versions of these libraries that have been highly 
tuned to their particular system architecture.  Users of high performance computers sometimes 
employ these libraries. Unfortunately, many users are unaware of their existence, and don't use them 
even when they are available. 
 
What if compilers could recognize a poor algorithm written by a user, and replace it with the best 
implementation of a better algorithm that solves the same problem?  Given reasonable 
implementations of both algorithms, such a replacement would result in as significant performance 
improvement. This book explains an approach that makes this possible. 
 
The scope over which compilers perform optimizations has steadily increased in the past three 
decades.  Initially, they performed optimizations on a sequence of statements that would be executed 
as a unit, e.g. a basic block.  During the 1970's, researchers developed control flow analysis,  
data flow analysis and name association algorithms.  This made it possible for compilers to do 
optimizations across an entire procedure. During the 1980's, researchers extended these analyses 
across procedure boundaries, as well as adding side effect analysis.  This made it possible for compilers 
to do optimizations across an entire program. 
 
We can characterize the analyses behind these optimizations from another perspective besides scope.   
They all add data structures that represent information synthesized from the program source.  Some 
add new abstract entities, like a basic block.  Others add new relationships, like control flow 
dominance.  Some add both.  The more abstract entities and relationships a compiler has available to  
characterize the semantics of a program, the more opportunities exist for optimization. 
 
Now that commercial compilers can analyze a program across its entire scope, optimization 
researchers need to ask where the next layer of synthesized information will come from. This book 
explains an approach that adds a whole new layer of entities and relationships to the semantic analysis 
that compilers can perform on application codes. 
 



Parallel computation will be the norm in the twenty-first century.  Parallel hardware has gone from use 
in super-computers to departmental servers.  Recently, we have seen multiple processors available 
even in high-end workstations and PC's.  Unfortunately, the parallel potential of hardware has raced 
far ahead of the parallel applications of software. 
 
There are currently two approaches to applying parallelism to applications. The first is to write 
completely new applications in new languages. Abandoning applications that work is simply 
unacceptable to most non-academic users of high performance computers. 
 
The second approach is to convert existing applications written in existing languages to a parallel form.  
This can be done manually or automatically. The labor required to rewrite applications to make use of 
current parallel systems is great.  Even partial success in automatically parallelizing existing codes has 
obvious economic advantages. This book explains an approach to automatically parallelizing 
applications that is complementary to current automatic parallelization methods. 
 
Prehistory of the Solution 
 
The past often explains the present.  In our case, our professional experience prior to the project that 
resulted in this book provides clues to the motivation and direction that the project took.  We have 
identified the following activities as motivations for our research: 

• interaction with people doing competitive benchmarking, 
• experiences implementing vectorizing compilers, 
• experiences implementing interprocedural compilers, and 
• interest in compiling APL programs. 

 
Competitive Benchmarking 
 
The peculiar nature of the high-performance computer business provided a major motivation for 
investigating automatic algorithm recognition.  At some point in the lengthy (six months or more) sales 
cycle, the customer will narrow down the prospective vendors to a short list.  Some customers only use 
third-party applications.  They will ask the vendors to run these applications on the bid configuration 
with data sets that represent their workload.  If they have written their own applications, they give the 
vendors the most important of these for porting and execution on the vendors' hardware. 
 
The task of porting and running the application falls to a pre-sales software engineer.  The time that 
this engineer has to get the application running and showing the best performance on the target 
system is limited.  Typically, one to four weeks are allowed.  Sometimes just a few days are available. 
 
Once the engineer has the application ported and generating correct answers, he or she turns to the 
problem of optimizing performance.  Customers provide a variety of constraints on what can be done 
at this point.  At one extreme, a customer may require that no changes be made to the source code of 
the application.  This makes the benchmark activity as much a test of the compiler's automatic 
optimization capabilities as the performance of the hardware system.  All the engineer can do is specify 
compiler command-line options, typically stored in a makefile. 
 
At the other extreme, the customer may allow the vendors to rewrite any portion of the system they 
want in assembly language to achieve a performance improvement.  This makes the benchmark 



activity as much a test of the expertise of the benchmarkers as the performance of the hardware 
system.  The sophisticated customers ask for both approaches, in order to evaluate the difference 
between typical and peak performance. 
 
During application tuning, the engineer often sees unrealized opportunities for performance 
improvement.  The engineer may observe procedures that do the same computation as highly 
optimized procedures in the vendor's mathematical subroutine library.  If the customer's constraint is 
``no source changes,'' he or she can't insert a call to the library subroutine.  The engineer may observe 
assembly code generated by the compiler that is slower than what could be written manually.  If the 
customer's constraint is ``high-level language source changes only,'' he or she can't insert a call to an 
alternative procedure written in hand-polished assembly code. 
 
These circumstances led to regular requests from pre-sales engineers for compilers that make handling 
benchmarks simpler.  One request was to provide a feature to match user code and replace it with calls 
to special procedures.  These requests led us to see the potential commercial value of an algorithm 
recognition project. 
 
Such a feature must be usable by a programmer who knows nothing about the internal workings of a 
compiler.  The patterns must be generated directly from high-level language source.  The code 
replacement actions must be a simple specification of a name and a mapping between expressions in 
the original program and arguments of the special procedure.  Adding a new pattern to the knowledge 
base must be no more complicated than running the compiler with some special command line 
options.   
 
Vectorizing Compilers 
 
In 1988, Convex Computer Corporation began shipping its C-2 series of vector-parallel processors.   
The Fortran compiler (version 5.0) for that system included a powerful optimizer that performed 
automatic vectorization and parallelization. 
 
At that time, the Livermore Loops suite was one of the key benchmarks used to evaluate high 
performance systems and their compilers.  Two of the loops were not vectorizable by standard 
algorithmic means.  The loop computing the partial prefix sum of a vector has an actual recurrence.  
The loop searching for the first minimum value of a vector and returning the index has a premature 
loop exit.  Recurrences and loop exits hinder standard vectorization algorithms. 
 
To get the maximum performance on the Livermore loops, the Fortran project leader implemented a 
special pass after normal vectorization.  This pass found two loops that could be partially realized with 
vector instructions.  He described the technique as follows:  ``The only pattern matching performed by 
the compiler currently is to recognize recurrences that can in fact be vectorized but not by 
straightforward methods.''  Most compilers for high-performance computers contain such techniques 
for improving their benchmark standing, but vendors are rarely willing to admit it publicly. 
 
The compiler internal representation used directed graphs to represent expressions data flow, and 
control flow.  The pattern matching for the two loops was a cascading series of tests on the arcs and 
nodes that represented a singly-nested loop.  It took 40 tests to identify the vector prefix sum loop and 
73 tests to identify the index of minimum search.  These counts treat a switch statement as one test.  
They also include support for both Fortran and C, since this was a language-independent optimizer. 



 
Once the candidate loop was identified, the contents of the loop were removed, the trip count was set 
to one, and a call to a vectorized runtime library procedure was inserted.  Writing the identification 
and replacement code was time-consuming  and error-prone. 
 
Once the pre-sales engineers found out that the compiler could pattern match these two loops, they 
asked for similar support vectorizing additional similar loops.  One of us (Metzger) took over 
responsibility for the Fortran compiler project after the initial pattern matching work was completed.   
He added support for matching and replacing two more loop types that had not previously been 
vectorizable because of premature loop exits: 

• searching a vector for the first element of a vector that matches a scalar quantity according to 
a relation (e.g., equality), and  

• searching for the first minimum magnitude value of a vector and returning the index. 
It took 80 tests to identify generalized search loops and 71 tests to identify the index of minimum 
magnitude search.  The same caveats apply as with the test counts for the original patterns. 
 
This effort was not purely an exercise in benchmarking.  Loops that search an array for maximum or 
minimum values or for an element that meets a certain criterion occur frequently in scientific and 
engineering applications.  Subroutines that implement these loops are found in the standard version of 
the BLAS (Basic Linear Algebra Subroutine library). 
 
A vendor-supplied version of the BLAS typically runs substantially faster than the version one created 
from compiling the public domain sources.  If a programmer replaces these loops with calls to the 
vendor's version of the BLAS, the application will speed up.  The procedures called when the loops 
were pattern matched were special versions of the vendor-supplied BLAS subroutines.  So when the 
compiler matched the loops, the application ran faster without the programmer having to make any 
changes. 
 
The lack of generality and the labor-intensive nature of the work, however, made it untenable for 
further development.  We wanted an approach to recognizing and replacing patterns that was general 
and easier to maintain.  We believed such an approach required an external pattern database. 
This database would consist of patterns and actions that could be maintained and enhanced without 
having to change the source code of the compiler itself. 
 
Interprocedural Compilers 
 
In 1991, Convex Computer Corporation began shipping a product, called the Application Compiler, 
which performed interprocedural optimization on programs written in Fortran and C.  It was the 
logical conclusion to a series of increasingly powerful optimizing compilers that became available 
during the previous two decades.  First, compilers performed optimization over a basic block, which is 
a group of sequentially executed statements with a single exit point.  Next came compilers that 
performed optimization over an entire procedure.  Finally, compiler technology reached the scope of 
an entire application. 
 
There were two main motivations for developing this product.  The first was to develop new sources of 
information that would improve scalar optimization and vectorization.  The second was to 
automatically parallelize loops that contained procedure calls.  With the release of version 2.0 of the 
Application Compiler at the beginning of 1995, both of these goals were reached. 



 
The Application Compiler performed the following analyses: 

• Call Analysis -- Which procedures are invoked by each call? 
• Alias Analysis -- Which names refer to the same location? 
• Pointer Tracking -- Which pointers point to which locations? 
• Scalar Analysis -- Which procedures (and subordinates) use and assign which scalars? 
• Array Analysis -- Which procedures (and subordinates) use and assign which sections of arrays? 

 
Having a compiler that could automatically parallelize loops that contained procedure calls did expose 
more high-level parallelism.  Unfortunately, it also exposed the inefficiencies in the sequential code 
that was being parallelized.  Some questions naturally arose when this phenomena was observed. 

• Could a given sequential algorithm be replaced by another more efficient sequential 
algorithm? 

• Could a given sequential algorithm be replaced by a parallel version of a different algorithm 
that computes the same result? 

• Could a compiler do this automatically? 
 
As the Application Compiler became a mature product, there were few new optimizations that 
remained to be implemented.  The department that produced this compiler specialized in compiler 
optimization.  It was clear that we needed to undertake research that would open new doors for 
optimization.  Algorithm recognition seemed to be the most likely candidate. 
 
A programmer can frustrate any algorithm recognition system that works only on a procedural level by 
hiding some of the details in called procedures.  Such modular structure is considered good 
programming practice.  The Application Compiler presented us with a platform for investigating 
algorithm recognition when dealing with applications written in a modular style. 
 
The results of interprocedural analysis can be used to determine whether a called procedure is 
relevant to an algorithm to be recognized.  If the call is relevant, the procedure can be substituted 
inline, so that the code executed by the called procedure can be completely analyzed.  The Application 
Compiler had a complete facility for doing this substitution.  It also had the infrastructure necessary to 
use profile information to identify the computational kernels of the application.  It became the logical 
basis for an algorithm recognition project. 
 
APL Compilers 
 
One of us (Metzger) had a long-standing interest in the compilation of APL programs.  APL is typically 
interpreted, rather than compiled.  This is because, at any point during execution, names can be bound 
to an object that has a different data type or dimensionality than the previously bound object. 
 
APL interpreters normally operate by preparing operands and executing an operation by dispatching 
the appropriate runtime subroutine.  Several researchers have worked on hybrid interpreter-
compilers, or even ``pure'' compilers for APL since the late 1970's. These compilers typically generate 
code by composing data structures representing the access patterns of the APL operations into a 
demand-driven execution model. 
 



These APL compiler efforts have largely focused on optimizing individual statements.  This makes sense 
since APL is a very high level language.  One line of APL can be the equivalent of pages of C or Fortran. 
 
There are several kinds of interpretive overhead within a statement that such compilers can reduce: 

• checking operand types before each operation, 
• converting operands to the correct type, 
• dispatching the correct runtime procedure for a given operation, 
• allocating temporary storage for results, and 
• copying values to and from temporary variables holding results. 

What is not optimized are the actual operations themselves.   
 
APL interpreters are typically coded so that individual operations on an array are just as efficient as any 
compiled code.  An APL interpreter makes a series of calls to runtime subroutines, even for a single 
statement. An APL compiler replaces those calls with a single call to a procedure generated to execute 
the equivalent of that line of APL code. 
 
One of the well-known characteristics of APL is the use of idioms:  ``An idiom is a construction used by 
programmers for a logically primitive operation for which no language primitive exists.'' 
 
Most APL interpreters provide very limited support for idiom recognition.  The APL grammar is simple 
enough that it is often analyzed with a finite state machine.  Those idioms that can be recognized 
during the syntax analysis are replaced with calls to runtime procedures that are not directly accessible 
to the user. 
 
Snyder's paper on “Recognition and Selection of Idioms for Code Optimization” suggested an 
alternative approach to compiling APL.  He describes an algorithm to find idioms in an expression by 
tree matching.  If his approach is used to implement a line of APL with a call to a single runtime 
procedure, it provides the same order of execution speedup as the other compilation model.   
 
The advantage of Snyder's approach is that it is extensible by the user.  If a line of APL code is a 
performance bottleneck, the user can add a pattern for the idiom in the pattern database, and a 
procedure that implements it in the runtime library.  Snyder's paper inspired us to reconsider trees as a 
representation for algorithm recognition, when the consensus approach favored graphs. 
 
Our prior experience in developing compilers for Convex and our personal research interests led us to 
the following conclusions. 

1. Experience with competitive benchmarking showed us that algorithm recognition could be 
commercially valuable. 

2. Vectorizing by ad hoc pattern matching showed us that pattern matching was useful for 
optimization.  It must, however, be driven by a database of patterns and actions external to 
the compiler in order to be maintainable. 

3. Developing an interprocedural optimizing compiler showed us that automatic algorithmic 
parallelization would expose inferior sequential algorithms.  It also showed us that it was 
possible to deal with obstacles to algorithm recognition through program transformations. 

4. APL compiler research, and Snyder’s approach in particular, inspired us to reconsider trees as a 
representation for algorithm recognition, when the consensus approach favored graphs. 

 


